python数据来源来源?

大数据 2024-05-29 浏览(0) 评论(0)
- N +

一、python数据来源来源?

它的数据来源主要是来源于它的数据库

二、eps的数据来源?

EPS(Economy Prediction System)全球统计数据/分析平台是北京福卡斯特信息技术有限公司(BFIT)投资500余万元倾力打造的专业数据服务平台。

北京福卡斯特信息技术有限公司(BFIT)是国内专业的数据、信息和软件服务提供商, BFIT 始终坚持服务第一、技术领先的理念,自创立以来,凭借先进的软件开发技术和完善的数据服务,深受广大用户欢迎。其自主开发的EPS数据平台被冠以“国内首家专业数据+分析预测平台”,在业界引起强烈关注。

三、toobigdata数据来源?

toobigdata是一个大数据的网站,包含了抖音与快手两大平台的各种数据,给我们提供了更直观的数据分析,不仅有抖音的官方资源,还有众多第三方的各种合作机构

四、ndvi数据来源?

归一化植被指数

遥感影像中,近红外波段的反射值与红光波段的反射值之差比上两者之和。

基本信息

中文名

归一化植被指数

外文名

Normalized Difference Vegetation Index, NDVI

(NIR-R)/(NIR+R)

简介

即(NIR-R)/(NIR+R)

NIR为近红外波段的反射值

R为红光波段的反射值

英文缩写为 NDVI。归一化植被指数是反映农作物长势和营养信息的重要参数之一。根据该参数,可以知道不同季节的农作物对氮的需求量, 对合理施用氮肥具有重要的指导作用。

NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。

1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;

2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;

3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;

4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关;

五、产业数据来源?

1.流动数据。也可以称之为物联网,这些数据可接连到您的IT网络连接设备。当这些数据来到您的网络设备上时,您需要进一步对其分析来决定那些数据是否有意义,其中有意义的可以保留,而那些没意义的则可以删除。关于流动数据的更多理解,您可以阅读其相关白皮书。

2.社交数据。社交数据在社交互动中越来越具有吸引力,尤其是它的营销功能。但是这些数据通常是在非结构化或半结构化形式,对于一个公司当使用和分析这些数据信息的时候,不仅要考虑数据的规模,大数据应用也是一个独特的挑战。

3.公开来源。庞大的数据可以通过打开数据源,像美国政府的数据,CIA世界各国概况或者欧盟开放数据门户等等。

六、谷雨数据来源?

谷雨源自古人“雨生百谷”之说,每年4月20日或21日太阳到达黄经30°时为谷雨。

七、wps数据来源?

选中公式单元格---查看编辑栏公式里面的数据引用就是数据来源!!!

八、GIS数据来源?

1、地图:各种类型的地图是GIS最主要的数据源,因为地图是地理数据的传统描述形式。我国大多数的GIS系统其图形数据大部分都来自地图。

2、遥感影像数据:遥感影象是GIS中一个极其重要的信息源。通过遥感影象可以快速、准确地获得大面积的、综合的各种专题信息,航天遥感影象还可以取得周期性的资料,这些都为GIS提供了丰富的信息。

3、数字数据:目前,随着各种专题图件的制作和各种GIS系统的建立,直接获取数字图形数据和属性数据的可能性越来越大。数字数据也成为GIS信息源不可缺少的一部分。

九、财经数据来源?

财经的数据来源于公司的素财务状况,源于市场的财务数据统计

十、bp数据来源?

BP神经网络数据预测

1目的:利用BP神经网络进行数据预测。

2 特点

3 原理

人工神经元模型

4 算法

5 流程

6 源代码

clear; clc;

TestSamNum = 20; % 学习样本数量

ForcastSamNum = 2; % 预测样本数量

HiddenUnitNum=8; % 隐含层

InDim = 3; % 输入层

OutDim = 2; % 输出层

% 原始数据 

% 人数(单位:万人)

sqrs = [20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ...

41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63];

% 机动车数(单位:万辆)

sqjdcs = [0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6...

2.7 2.85 2.95 3.1];

% 公路面积(单位:万平方公里)

sqglmj = [0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 ... 

0.56 0.59 0.59 0.67 0.69 0.79];

% 公路客运量(单位:万人)

glkyl = [5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 ...

22598 25107 33442 36836 40548 4292743462];

% 公路货运量(单位:万吨)

glhyl = [1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 ...

13320 16762 18673 20724 20803 21804];

p = [sqrs; sqjdcs; sqglmj]; % 输入数据矩阵

t = [glkyl; glhyl]; % 目标数据矩阵

[SamIn, minp, maxp, tn, mint, maxt] = premnmx(p, t); % 原始样本对(输入和输出)初始化

SamOut = tn; % 输出样本

MaxEpochs = 50000; % 最大训练次数

lr = 0.05; % 学习率

E0 = 1e-3; % 目标误差

rng('default');

W1 = rand(HiddenUnitNum, InDim); % 初始化输入层与隐含层之间的权值

B1 = rand(HiddenUnitNum, 1); % 初始化输入层与隐含层之间的阈值

W2 = rand(OutDim, HiddenUnitNum); % 初始化输出层与隐含层之间的权值 

B2 = rand(OutDim, 1); % 初始化输出层与隐含层之间的阈值

ErrHistory = zeros(MaxEpochs, 1); 

for i = 1 : MaxEpochs 

HiddenOut = logsig(W1*SamIn + repmat(B1, 1, TestSamNum)); % 隐含层网络输出

NetworkOut = W2*HiddenOut + repmat(B2, 1, TestSamNum); % 输出层网络输出

Error = SamOut - NetworkOut; % 实际输出与网络输出之差

SSE = sumsqr(Error); % 能量函数(误差平方和)

ErrHistory(i) = SSE;

if SSE < E0

break;

end

% 以下六行是BP网络最核心的程序

% 权值(阈值)依据能量函数负梯度下降原理所作的每一步动态调整量

Delta2 = Error;

Delta1 = W2' * Delta2 .* HiddenOut .* (1 - HiddenOut); 

dW2 = Delta2 * HiddenOut';

dB2 = Delta2 * ones(TestSamNum, 1); 

dW1 = Delta1 * SamIn';

dB1 = Delta1 * ones(TestSamNum, 1);

% 对输出层与隐含层之间的权值和阈值进行修正

W2 = W2 + lr*dW2;

B2 = B2 + lr*dB2;

% 对输入层与隐含层之间的权值和阈值进行修正

W1 = W1 + lr*dW1;

B1 = B1 + lr*dB1;

end

HiddenOut = logsig(W1*SamIn + repmat(B1, 1, TestSamNum)); % 隐含层输出最终结果

NetworkOut = W2*HiddenOut + repmat(B2, 1, TestSamNum); % 输出层输出最终结果

a = postmnmx(NetworkOut, mint, maxt); % 还原网络输出层的结果

x = 1990 : 2009; % 时间轴刻度

newk = a(1, :); % 网络输出客运量

newh = a(2, :); % 网络输出货运量

subplot(2, 1, 1);

plot(x, newk, 'r-o', x, glkyl, 'b--+');

legend('网络输出客运量', '实际客运量');

xlabel('年份');

ylabel('客运量/万人');

subplot(2, 1, 2);

plot(x, newh, 'r-o', x, glhyl, 'b--+');

legend('网络输出货运量', '实际货运量');

xlabel('年份');

ylabel('货运量/万吨');

% 利用训练好的网络进行预测

pnew=[73.39 75.55

3.9635 4.0975

0.9880 1.0268]; % 2010年和2011年的相关数据;

pnewn = tramnmx(pnew, minp, maxp); 

HiddenOut = logsig(W1*pnewn + repmat(B1, 1, ForcastSamNum)); % 隐含层输出预测结果

anewn = W2*HiddenOut + repmat(B2, 1, ForcastSamNum); % 输出层输出预测结果

anew = postmnmx(anewn, mint, maxt);

disp('预测值d:');

disp(anew);