python机器学习和人工智能区别?

人工智能 2024-04-26 浏览(0) 评论(0)
- N +

一、python机器学习和人工智能区别?

人工智能一般指深度学习,深度学习也是机器学习近些年发展的一个趋势。所以深度学习也属于机器学习。让机器通过训练去学习好的权重最终可以打到好的可供利用的模型结果。

二、机器学习和人工智能的联系有什么?

1、人工智能的发展史

早在1950年的时候,人工智能就已经出现了。最早的人工智能就应用于西方的娱乐上了,当时的人工智能仅仅作为西方权贵的娱乐工具,还并未用于科学研究方面。那时人工智能多应用于下棋的领域,就是使用人工智能来辅助下棋。

在早期人工智能还未得到广泛应用,而到了1980年的时候,随着科学技术的发展,机器学习就随着诞生了。在那时,西方科学技术的发展使得邮件得到广泛使用,邮件用的多,垃圾邮件也随之增多,于是人们开发出了机器学习领域,并将早期的机器学习应用于垃圾邮件识别,机器学习也作为了人工智能的重要分支。

随后在进入20世纪后的2010年,互联网的发展到了一个全新的阶段,国内计算机技术也开始普及了。互联网的普及也就带来了数据的积累,时至今日,大数据也还是一个热门的话题。数据的积累带来了什么呢?有了数据作为支撑,机器学习才能发挥出它的能力,于是深度学习诞生了,深度学习作为机器学习的一个分支,它同样也是基于数据的。在深度学习的过程中才会产生启发,为什么以前的数据只是数据,后来的数据就可以成为大数据,这都是因为深度学习对于大数据技术开发的每一个阶段都是有帮助的,不管是数据的分析还是挖掘还是建模,只有深度学习,这些工作才会有可能一一得到实现。深度学习早期更多的应用于图像识别。

人工智能又分为强人工智能弱人工智能。弱人工智能是基于数据的,它根据数据的经验来完成决策,而并没有自我决策的能力。强人工智能是不需要基于大数据的,它完全拥有自我决策的能力,更倾向于人类本身。但是现在所见到的大部分都是弱人工智能。

2、人工智能与机器学习以及深度学习的关系

深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。机器学习是人工智能实现的一种途径,深度学习是机器学习其中的一个方法发展而来。人工智能所必备的三要素是:数据算法计算力

人工智能是当下最热门的科技词汇,但很多人其实不知道 当他们在说“人工智能”时实际是在说机器学习。

人工智能最被认可的定义来自阿兰·图灵于1950年提出的图灵测试验证法:

如果一台计算机能用书面方式回答人类提出的问题,并且一位人类询问者在收到回答 后意识不到这是来自于计算机的回答,那么这台计算机就拥有了人工智能。

显然,现在市场上的“智能”产品几乎都无法通过图灵测试。

可知,机器学习是人工智能的一部分,现在诸如导航软件、语音翻译等其实都是一种 机器学习产品,如图所示是机器学习与人工智能的关系(注意:图中的广义图灵测试是指为人工智能加入物理特性的测试。):

机器学习是人工智能四大领域中的一个。另外三个领域是:自然语言处理、知识表示、自动推理。由于近代机器学习方法在借鉴统计理论后得到了长足发展,它越来越多地影响到了人工智能的其他方面。比如在自然语言处理领域,当前很多网络店铺的虚拟客服能在很大程度上解决一些客户用自然语言提出的售后问题,其背后正是采用了基于机器学习方法的客户意图分类和搜索系统。

3、机器学习与数据挖掘

数据挖掘的一个非常简单的定义:

一门从大量资料或者资料库中提取有用信息的科学。

可以看出,数据挖掘强调的只是一个“提取有用信息”的目标,并没有像机器学习那样 定义了方法或手段。而随着后来的发展,数据挖掘与机器学习采用了越来越多相同的方 法,比如分类、回归、聚类等都是两个学科的共同目标任务。 在不同点方面,机器学习学到的知识通常是一个普适或可以被广泛应用的知识,比如手写识别、自动驾驶。这些知识一旦被掌握,可以迅速普及。而数据挖掘常常是针对某个特定的项目或数据集,被挖掘的知识更适用于特定的服务对象,比如挖掘某个超市中最值 得销售的商品。由于每个超市所在社区与居民文化的不同,往往需要根据每个超市自身的 销售历史数据进行各自挖掘。

如图从目标、手段、场合等不同方面演示了机器学习与数据挖掘的主要异同点。可以得知两者在方法与算法方面是互通互用的,是两门学科在各自领域最主要的研究课题。它们的不同之处主要在于出发点的不同:数据 挖掘更强调流程、强调结果,而机器学习强调对算法本身的研究。

可以肯定的是,一个机器学习专家只需花很少的时间就能成为一个数据挖掘专家,反之应该也是如此。

4、什么是机器学习

机器学习的定义

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习的发展以很多其他学科为基础,包括传统计算机、数据库与数据仓库、信息论、人工智能、计量经济学、统计学、神经科学等。它们之中的大多数是机器学习的理论与实践基础。

机器学习定义:机器学习是从数据中自动分析获取模型,并利用模型对未知数据进行预测。

机器学习应用:图像识别、推荐系统、自动驾驶等

机器学习的一般流程

虽然机器学习科学包含了大量解决不同问题的算法与技术,但在工程实践中它还是有 一个几乎普适的流程模板。

三、机器学习和人工智能有什么关系?

机器学习是人工智能的一个子集,人工智能的范畴还包括自然语言处理、语音识别等方面。机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习于1959年提出,指研究和构建一种特殊算法(非某一个特定的算法,包括深度学习),能够让计算机自己在数据中学习从而进行预测,实现算法进化,从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。

机器学习任务主要包括监督学习、无监督学习、概率图模型和强化学习。监督学习的训练中数据是有标签的,即每一个输入变量都有对应的输出变量。模型旨在通过建立输入变量和输出变量之间的关系,来预测输出变量。可以根据输出变量的类型对监督学习进行划分。如果输出变量是定量的,那就是回归问题;如果输出变量是定性的,那就是分类问题。无监督学习中,数据集并没有对应的标签,可粗略划分为聚类和降维。概率图模型以Bayes学派为主。强化学习是让模型以“试错”的方式在一定的环境中学习,通过与环境交互获得对应的奖励,目标是使得到的奖励最大化,例如交易策略的学习。

有监督学习:标签化

基于处理数据种类的不同,可分为有监督学习、无监督学习、半监督学习和强化学习等几种类型。基于学习方法的分类,可分为归纳学习、演绎学习、类比学习、分析学习。基于数据形式的分类,可分为结构化学习和非结构化学习。

有监督学习:从标记的训练数据来推断功能的机器学习任务

有监督学习(SupervisedLearning)是从标签化训练数据集中推断出函数的机器学习任务。训练数据由一组训练实例组成。在监督学习中,每一个例子都是一对由一个输入对象(向量)和一个期望的输出值(监督信号)。最为广泛使用的算法有:支持向量机、线性回归、逻辑回归、朴素贝叶斯、线性判别分析、决策树、K-近邻、多层感知器(MLP)。

决策树(DecisionTree)是一种基本的分类和回归算法。该算法模型呈树形结构,主要由结点和有向边组成。结点又分为两种类型:内部结点和叶子结点。内部结点表示在一个属性或特征上的测试,每一个结点分枝代表一个测试输出,每一个叶子结点代表一个类别。决策树学习是以实例为基础的归纳学习。将多个决策树结合在一起,每次数据集是随机有放回的选出,同时随机选出部分特征作为输入,所以该算法被称为随机森林算法。随机森林算法是以决策树为估计器的Bagging算法。

无监督学习:未标记数据

无监督学习:从未标记的训练数据来解决模式识别的问题

现实生活因缺乏足够的先验知识,所以难以人工标注类别或进行人工类别标注的成本太高。很自然地希望计算机能代人工完成这些工作,或至少提供一些帮助。根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为无监督学习。常用的无监督学习算法主要有主成分分析方法PCA等,等距映射方法、局部线性嵌入方法、黑塞局部线性嵌入方法和局部切空间排列方法等。无监督学习里典型例子是聚类。聚类算法的主要思想就是以一定的标准将所有数据分成若干类,是一个无监督学习方法。

K-means算法是典型的基于距离的聚类算法。它是通过将样本划分为k个方差齐次的类来实现数据聚类。该算法需要指定划分的类的个数,即在最小化误差函数的基础上将数据划分为预定的类数K,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。层次聚类是聚类算法的一种,通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树。在聚类树中,不同类别的原始数据点是树的最低层,树的顶层是一个聚类的根节点。DBSCAN算法是一种典型的基于密度的聚类方法,即要求聚类空间中的一定区域内所包含对象(点或其他空间对象)的数目不小于某一给定阈值,它将簇定义为密度相连的点的最大集合。该方法能在具有噪声的空间数据库中发现任意形状的簇,可将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类。

可点击下方 行行查 链接查看 报告全文

行行查 | 行业研究数据库

欢迎评论、点赞、收藏和转发! 有任何喜欢的行业和话题也可以私信我们。

四、机器学习和人工智能领域

在如今快速发展的科技领域中,机器学习和人工智能领域一直备受瞩目。随着大数据的兴起和计算能力的增强,机器学习和人工智能技术正在逐渐渗透到各个行业中,为我们的生活和工作带来了诸多便利。

机器学习和人工智能的基本概念

首先,让我们简单了解一下机器学习和人工智能领域的基本概念。机器学习是人工智能的一个子领域,它通过让计算机系统从数据中学习模式和规律,自动优化和改进性能,而不需要明确地进行编程指导。人工智能则是模拟人类智能的机器,通过学习、推理和自主行动来执行各种任务。

机器学习和人工智能的应用领域

机器学习和人工智能领域目前已经被广泛应用于各行各业。在医疗领域,机器学习可以帮助医生进行疾病诊断和预测治疗效果;在金融领域,人工智能可以用于智能投资和风险管理;在交通领域,智能交通系统可以优化交通流量和减少拥堵。这些都是机器学习和人工智能技术的重要应用。

机器学习和人工智能的发展趋势

随着技术的不断进步,机器学习和人工智能领域也在不断发展和演进。未来,我们可以看到更加智能化的无人驾驶技术、智能家居系统、语音识别和自然语言处理系统等。这些技术的发展将会深刻影响我们的日常生活。

如何学习和应用机器学习和人工智能技术

如果您对机器学习和人工智能领域感兴趣,并希望学习和应用相关技术,那么您可以从以下几个方面入手:

  • 学习基础数学知识,包括概率论、线性代数和微积分等;
  • 掌握编程语言,如Python和R语言,用于实现机器学习算法;
  • 深入了解机器学习算法原理和应用场景,不断实践和积累经验;
  • 参与相关项目和比赛,与同行交流学习,不断提升技能水平。

结语

总的来说,机器学习和人工智能领域是一个充满挑战和机遇的领域,它不仅能够改变我们的生活方式,还能够推动社会的进步和发展。希望通过本文的介绍,您能对机器学习和人工智能有更加深入的了解,也能够在未来的学习和工作中有所启发和帮助。

五、机器学习和人工智能浙大

在当今数字化和智能化的时代,机器学习人工智能正在逐渐成为各个行业的热门话题。作为浙江大学的一名学生,我有幸能够深入了解这两个领域在学术和实践中的应用。本文将探讨浙江大学在机器学习和人工智能领域所取得的成就以及未来的发展方向。

浙江大学的机器学习和人工智能研究

浙江大学作为中国一流的高等学府,一直致力于在机器学习和人工智能领域进行前沿研究。学校拥有一支优秀的教学团队,他们在深度学习、自然语言处理、计算机视觉等方面取得了令人瞩目的成就。同时,浙江大学还与众多国际知名大学和研究机构开展合作,共同推动机器学习和人工智能的发展。

浙江大学机器学习和人工智能教育

除了在研究方面取得的成就,浙江大学还非常重视机器学习和人工智能的教育。学校开设了各种相关课程,涵盖了从基础概念到高级应用的全方位内容。学生们可以通过这些课程系统地学习和掌握机器学习和人工智能的核心知识和技能。

浙江大学机器学习和人工智能在实践中的应用

浙江大学不仅在学术研究和教育方面取得了重要进展,还将机器学习和人工智能应用于实践中。学校与各行各业的合作伙伴合作开展项目,通过机器学习和人工智能技术解决实际问题,推动产业升级和创新发展。

未来展望

展望未来,浙江大学将继续致力于机器学习和人工智能领域的研究和教育工作。学校将不断拓展国际合作,吸引更多优秀学生和学者加入这一领域的研究。同时,浙江大学也将加大机器学习和人工智能技术在各个领域的应用力度,为社会发展做出更大的贡献。

六、机器学习和人工智能领域有哪些必读的经典论文?

卷积神经网络基本上占据了现在人工智能领域的半壁江山。推荐几篇卷积神经网络的文章。

1. LeNet-5

LeNet-5可能是卷积神经网络的最早版本,含有2个卷积层。

LeCun Y., et al. Gradient-based learning applied to document recognition. Proc. IEEE, 86(11): 2278-2324, 1998.

https://ieeexplore.ieee.org/document/726791

2. 残差网络

残差网络也许是近年来引用量最高的论文(没有之一)。

He K., et al. Deep residual learning for image recognition. Proc. Conf. CVPR, pp. 770-778, 2016.

Deep Residual Learning for Image Recognition

3. SENet

SENet是ImageNet比赛的末代冠军,是一种「加权」形式下的通道注意力机制。

Hu J., et al. Squeeze-and-excitation networks. Proc. Conf. CVPR, pp. 7132-7141, 2018.

Squeeze-and-Excitation Networks

4. 残差收缩网络

残差收缩网络是一种「软阈值化」形式下的通道注意力机制,适合含噪数据。

深度残差网络的改进

Zhao M., et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 16(7), 4681-4690, 2020.

https://ieeexplore.ieee.org/document/8850096

七、机器学习和人工智能的思想如何在建筑/土木工程中应用?

建筑

1. 利用人工智能,根据要求以及卫星图等信息,快速生成建筑设计方案。

2. 利用机器学习,如风格迁移之类的,可以做建筑外观设计。

结构

3. 根据建筑图,自动生成施工图纸。

4. 利用深度学习做风速预测,可以用在结构的主动抗风上。

5. 桥梁的健康监测,现在大型桥梁都会布置传感器,数据量比较大,用机器学习做损伤识别。

施工

6. 用人工智能做施工方案。

7. 将现场施工现状变为施工图,可以和BIM结合,及时发现问题。

科研

8. 做材料特性,构件特性的性能预测。

【2018-09-14添加:最近这段时间,学校里土木方向,开始有越来越多的人开始关注机器学习在科研中的应用了,传统的简化思想已经很难处理复杂系统了,影响因素太多,也无法从原理上精确的预测结构的性能】

传统土木建筑的全过程都有可能被替代。对于普通的土木工程项目(大跨、超高、特殊建筑除外),除了外观设计需要创造性思维以外,其余的都是条条框框规范所决定的,只需要设计人员根据规范画图施工就可以了,这种工作是可以被机器替代的。

当然,设计人员在全过程的存在还是必不可少的。

AI具有改变传统行业的巨大潜力,但AI不是全部。

八、人工智能机器学习法?

人工智能

“机器学习是从人工智能的范式识别和计算学习理论中发展而成的计算机科学领域之一。机器学习先训练数据,然后研究可预测的算法。这些算法并不使用静态编程,而是通过输入的数据创建模型,从而进行预测或给出决策。”

九、人工智能和机器学习的思路是什么?

人工智能机器学习的基本思路是模仿人类学习行为的过程,机器学习经过几十年的发展,衍生出了很多种分类方法,这里按学习模式的不同,可分为监督学习、半监督学习、无监督学习和强化学习。

机器学习是将现实中的问题抽象为数学模型,利用历史数据对数据模型进行训练,然后基于数据模型对新数据进行求解,并将结果再转为现实问题的答案的过程。

十、人工智能导论中机器学习的原理?

机器学习是一种让计算机系统通过从数据中学习并不断改进自身性能的方法。其原理是通过算法和统计模型来分析和理解数据,从而使计算机系统能够自动发现数据中的模式和规律,并据此做出预测或决策。

机器学习的关键在于训练模型,即通过大量的数据输入和反馈来调整模型的参数,使其能够更准确地预测未知数据。常见的机器学习方法包括监督学习、无监督学习和强化学习,它们在不同的场景下应用广泛,如图像识别、语音识别、自然语言处理等。